Beyond Negation Detection: Comprehensive Assertion Detection Models for Clinical NLP Veysel Kocaman Yigit Gul Hasham Ui Haq Cabir Celik Mehmet Butgul M. Aytug Kaya David Talby John Snow Labs Inc., Delaware, USA # Dataset Description | Text | Label | Description | Size | | |--|---|---|------|--| | Overnight, the patient became hypoxic, dropping to the 80 's. | present | Confirms the presence of a medical condition. | 8622 | | | He gets short of breath with one flight of stairs. | conditional | Represents conditions that might occur under specific circumstances or conditions. | | | | Small stroke, nearly recovered, likely embolic from carotid artery. | possible | Suggests uncertainty or potential presence of a condition. | 652 | | | There was no evidence of diarrhea during medical Lawrence Memorial Hospital stay. | absent | Indicates the negation or nonexistence of a medical condition. | 2594 | | | Mother suffer MI in her 50 's, died at age 59. | associated
with someone
else (awse) | Refers to medical conditions related to individuals other than the patient, such as family members. | 131 | | | Hydrocodone 5 mg with Tylenol , one to two tablets every four hours p.r.n. pain . | hypothetical | Denotes speculative or conjectural conditions that are not currently present. | 445 | | The evaluation and benchmarking in this study are conducted exclusively on the official i2b2 dataset, which represents a comprehensive resource for assessing assertion detection frameworks in real-world clinical scenarios. # Methodology #### **Assertion DL** AssertionDL is a Bi-LSTM-based classification model designed for assertion detection, built on a modified version of a previous architecture. # NER ASSERTIONDL ASSERTION #### **FewShot Assertion** FewShotAssertion is a transformerbased model built on a modified SetFit framework, leveraging sentence-transformer embeddings and contrastive learning for few-shot assertion detection. #### **Contextual Assertion** The Contextual Assertion module extends rule-based assertion detection by leveraging user-defined rules and contextual patterns # Methodology #### **Fined-Tuned LLM** We fine-tuned LLama-3.1-8B on the i2b2 assertion training dataset using LoRA without quantization, ensuring parameter efficiency while preserving pre-trained knowledge. #### **Bert For Sequence Classifier** We implemented a transformerbased approach using BioBERT, a biomedical fine-tuned BERT model. # Methodology #### **Combined Pipeline** - The pipeline includes AssertionDL, FewShotAssertion, and Contextual Assertion models. - A majority voting mechanism is applied to resolve conflicts in predictions across models. ### Results | Model | present | absent | possible | hypothetical | conditional | awse* | weighted avg | |-------------------------|---------|--------|----------|--------------|-------------|-------|--------------| | Combined Pipeline** | 0.963 | 0.951 | 0.755 | 0.875 | 0.511 | 0.922 | 0.941 | | AssertionDL | 0.941 | 0.898 | 0.672 | 0.761 | 0.599 | 0.886 | 0.907 | | FewShotAssertion | 0.955 | 0.942 | 0.748 | 0.872 | 0.293 | 0.809 | 0.929 | | ContextualAssertion | - | 0.929 | 0.708 | - | - | 0.835 | 0.883 | | Fine Tuned LLM | 0.976 | 0.975 | 0.759 | 0.911 | - | 0.943 | 0.962 | | BFSC (BioBert) | 0.975 | 0.972 | 0.787 | 0.918 | 0.590 | 0.913 | 0.957 | | GPT-4o | 0.937 | 0.891 | 0.692 | 0.677 | - | 0.805 | 0.901 | | Azure Ai Text Analytics | - | 0.761 | 0.583 | 0.763 | 0.569 | 0.800 | 0.727 | | AWS Med Comprehend | 0.882 | 0.788 | 0.659 | 0.617 | - | 0.737 | 0.839 | | NegEx | - | 0.897 | _ | _ | _ | - | 0.897 | | BFSC latest best [11] | 0.979 | 0.972 | 0.786 | - | - | - | 0.952 | | Prompt-based Bert [29] | 0.971 | 0.968 | 0.763 | 0.921 | 0.485 | 0.875 | 0.951 | Comparison of assertion models across various categories. Best performing model for each category is represented with bold characters. The models in the first section of this table are developed by JSL. In LLM and GPT-40 experiments, hypothetical and conditional labels are merged/treated as a single label. ### Conclusion - The study evaluates JSL's state-of-the-art assertion detection models, from lightweight DL models to fine-tuned LLMs. - The fine-tuned LLM achieves the highest accuracy (96.2%), outperforming GPT-40 (90.1%) and commercial APIs, especially in Present, Absent, and Hypothetical assertions. - However, the LLM is extremely costly, running 100× slower on a CPU and being thousands of times more expensive for just 1-2% better accuracy. - Assertion DL, FewShot Assertion, and Bert For Sequence Classifier models offer efficient, competitive alternatives, with the Combined Pipeline (94.1%) outperforming all commercial solutions. - Integrated with Spark NLP, these smaller, domain-specific models surpass GPT-40, Azure AI, and AWS Medical Comprehend, providing scalable, cost-effective clinical NLP solutions. # ThankYou